The development of new superconducting circuits and the improvement of existing ones rely on the accurate modeling of spectral properties which are key to achieving the needed advances in qubit performance. Systematic circuit analysis at the lumped-element level, starting from a circuit network and culminating in a Hamiltonian appropriately describing the quantum properties of the circuit, is a well-established procedure, yet cumbersome to carry out manually for larger circuits. We present work utilizing symbolic computer algebra and numerical diagonalization routines versatile enough to tackle a variety of circuits. Results from this work are accessible through a newly released module of the scqubits package.