2017 Annual Conference on New Trends in Information &Amp; Communications Technology Applications (NTICT) 2017
DOI: 10.1109/ntict.2017.7976122
|View full text |Cite
|
Sign up to set email alerts
|

Fast image denoising based on modify CNN and noise estimation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 6 publications
0
1
0
1
Order By: Relevance
“…The results from the analysis show that the CNN model can efficiently remove a lot of Gaussian noise and restore the image details and data than any other traditional image filtering techniques. Dr. Haider Kadiam Hoomod and Saja Hikmat Dawood [6] proposed two algorithms The first is cellular neural network (CNN) with noise level estimation. The second algorithm is modify cellular neural network with noise level estimation.…”
Section: Literature Surveymentioning
confidence: 99%
“…The results from the analysis show that the CNN model can efficiently remove a lot of Gaussian noise and restore the image details and data than any other traditional image filtering techniques. Dr. Haider Kadiam Hoomod and Saja Hikmat Dawood [6] proposed two algorithms The first is cellular neural network (CNN) with noise level estimation. The second algorithm is modify cellular neural network with noise level estimation.…”
Section: Literature Surveymentioning
confidence: 99%
“…Görüntü elde etme esnasında çeşitli nedenlerden dolayı görüntüye eklenen istenmeyen sinyaller gürültü olarak adlandırılmaktadır [1]. Görüntü hayatımızın birçok alanının ayrılmaz bir parçası haline gelmiştir [2]. Tıpta hastalık teşhisinde, askeri alanda uydu görüntülerinde, özel anların unutulmaz kılınması istendiğinde, kimlik doğrulama işlemlerinde ve benzeri birçok durumda görüntüden ve görüntünün kusursuzluğunun istenmesinden bahsetmek mümkündür.…”
Section: Introductionunclassified