FPGAs are known to permit huge gains in performance and efficiency for suitable applications but still require reduced design efforts and shorter development cycles for wider adoption. In this work, we compare the resulting performance of two design concepts that in different ways promise such increased productivity. As common starting point, we employ a kernel-centric design approach, where computational hotspots in an application are identified and individually accelerated on FPGA. By means of a complex stereo matching application, we evaluate two fundamentally different design philosophies and approaches for implementing the required kernels on FPGAs. In the first implementation approach, we designed individually specialized data flow kernels in a spatial programming language for a Maxeler FPGA platform; in the alternative design approach, we target a vector coprocessor with large vector lengths, which is implemented as a form of programmable overlay on the application FPGAs of a Convey HC-1. We assess both approaches in terms of overall system performance, raw kernel performance, and performance relative to invested resources. After compensating for the effects of the underlying hardware platforms, the specialized dataflow kernels on the Maxeler platform are around 3x faster than kernels executing on the Convey vector coprocessor. In our concrete scenario, due to trade-offs between reconfiguration overheads and exposed parallelism, the advantage of specialized dataflow kernels is reduced to around 2.5x.