Anais Do Congresso Brasileiro De Automática 2020 2020
DOI: 10.48011/asba.v2i1.1663
|View full text |Cite
|
Sign up to set email alerts
|

Fast Markov Blanket Discovery Without Causal Sufficiency

Abstract: Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An important class of feature selectors are Markov Blanket (MB) learning algorithms. They are Causal Discovery algorithms that learn the local causal structure of a target variable. A common assumption in their theoretical basis, yet often violated in practice, is causal sufficiency: the requirement that all common causes of the measured variables in the dataset are also in the dataset. Recently, Yu et al. (2018) propose… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?