2008
DOI: 10.1016/j.enganabound.2008.03.002
|View full text |Cite
|
Sign up to set email alerts
|

Fast multipole method applied to 3-D frequency domain elastodynamics

Abstract: This article is concerned with the formulation and implementation of a fast multipoleaccelerated BEM for 3-D elastodynamics in the frequency domain, based on the so-called diagonal form for the expansion of the elastodynamic fundamental solution, a multi-level strategy. As usual with the FM-BEM, the linear system of BEM equations is solved by GMRES, and the matrix is never explicitly formed. The truncation parameter in the multipole expansion is adjusted to the level, a feature known from recent published stud… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
9
0

Year Published

2010
2010
2020
2020

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(9 citation statements)
references
References 24 publications
0
9
0
Order By: Relevance
“…On the basis of the decomposed expression, a variety of FMMs for elastodynamics have been developed for the last decade in terms of the following problems: 3D crack problems in lowfrequency regime (using the original FMM) [24,25] and high-frequency regime (using the diagonal form FMM) [26], 3D (ordinary) problems [35][36][37] for high-frequency regime, 2D problems for lowfrequency regime [27] and 2D/3D periodic problems for low-frequency regime [28][29][30][31]. We note that the decomposition is applicable to the time-domain analysis too [32][33][34].…”
Section: Brief Reviewmentioning
confidence: 99%
“…On the basis of the decomposed expression, a variety of FMMs for elastodynamics have been developed for the last decade in terms of the following problems: 3D crack problems in lowfrequency regime (using the original FMM) [24,25] and high-frequency regime (using the diagonal form FMM) [26], 3D (ordinary) problems [35][36][37] for high-frequency regime, 2D problems for lowfrequency regime [27] and 2D/3D periodic problems for low-frequency regime [28][29][30][31]. We note that the decomposition is applicable to the time-domain analysis too [32][33][34].…”
Section: Brief Reviewmentioning
confidence: 99%
“…To overcome these difficulties, several fast BEMs were developed in the past decades. The BEM accelerated by the fast multipole expansion method (FMM) [2][3][4][5][6] had been developed and applied to nearly all the fields that the conventional BEM can be employed. The BEM accelerated by the precorrected fast Fourier transform method (pFFT) [7] was widely applied as well [8][9][10][11][12].…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, preconditioning is essential to the effective solution of the linear systems using the iterative methods [4][5][6]. In order to improve the convergence rates, many preconditioning techniques have been proposed in the published literatures [6][7][8][9][10][11][12][13]. The popular and remarkable preconditioning techniques are sparse approximate inverse (SPAI) preconditioning [8][9][10][11].…”
Section: Introductionmentioning
confidence: 99%