This work presents a method to measure the soft tissue motion in three dimensions in the orbit during gaze. It has been shown that two-dimensional (2-D) quantification of soft tissue motion in the orbit is effective in the study of orbital anatomy and motion disorders. However, soft tissue motion is a three-dimensional (3-D) phenomenon and part of the kinematics is lost in any 2-D measurement. Therefore, T1-weighted magnetic resonance (MR) imaging volume sequences are acquired during gaze and soft tissue motion is quantified using a generalization of the Lucas and Kanade optical flow algorithm to three dimensions. New techniques have been developed for visualizing the 3-D flow field as a series of color-texture mapped 2-D slices or as a combination of volume rendering for display of the anatomy and scintillation rendering for the display of the motion field. We have studied the performance of the algorithm on four-dimensional volume sequences of synthetic motion, simulated motion of a static object imaged by MR, an MR-imaged rotating object and MR-imaged motion in the human orbit during gaze. The accuracy of the analysis is sufficient to characterize motion in the orbit and scintillation rendering is an effective visualization technique for 3-D motion in the orbit.