In this work, the differential evolution algorithm behavior under a fixed point arithmetic is analyzed also using half-precision floating point (FP) numbers of 16 bits, and these last numbers are known as FP16. In this paper, it is considered that it is important to analyze differential evolution (DE) in these circumstances with the goal of reducing its consumption power, storage size of the variables, and improve its speed behavior. All these aspects become important if one needs to design a dedicated hardware, as an embedded DE within a circuit chip, that performs optimization. With these conditions DE is tested using three common multimodal benchmark functions: Rosenbrock, Rastrigin, and Ackley, in 10 dimensions. Results are obtained in software by simulating all numbers using C programming language.