Rates of fast reactions are inversely proportional to the solvent viscosity (η). However, a quantitative study demonstrates that dynamic viscosity η is often a crude reflection of a viscous drug exerted on a molecule or radical. This paper aims to present an accurate dependence of the rates of fast bi- and monomolecular reactions upon the viscous drug of a media. Different correction coefficients fmicro are discussed, which should lead to a dependence rate ∝ (fmicroη)−1. Microviscosity is viscosity, leading to the expected rate dependence upon shear viscosity. In many cases, experimentally measured diffusion coefficients of molecules of a similar structure to the reactive radicals lead to the correct prediction of radicals’ diffusion coefficients and the rate constants of radicals recombination. Microviscosity of complex non-Newtonian liquids (biological liquids, polymeric solutions) can be measured using low MW molecular probes. Usually, the measured ηmicro is much lower than the shear η of complex biological or polymeric liquids. Cis–trans isomerization of bulky groups in monomolecular reactions is often described with Kramers’ theory. An example of such isomerization of a cyanine dye studied experimentally and theoretically is presented. It is demonstrated in the selected case that Kramers’ theory adequately describes the dependence of cis–trans isomerization of organic compounds upon η.