Using morphometrics to study nonavian dinosaur fossils is a practice that predates the origin of the word “dinosaur.” By the 1970s, linear morphometrics had become established as a valuable tool for analyzing intra‐ and interspecific variation in nonavian dinosaurs. With the advent of more recent techniques such as geometric morphometrics and more advanced statistical approaches, morphometric analyses of nonavian dinosaurs have proliferated, granting unprecedented insight into many aspects of their biology and evolution. I outline the past, present, and future of morphometrics as applied to the study of nonavian dinosaurs zeroing in on five aspects of nonavian dinosaur paleobiology where morphometrics has been widely utilized to advance our knowledge: systematics, sexual dimorphism, locomotion, macroevolution, and trackways. Morphometric methods are especially susceptible to taphonomic distortion. As such, the impact of taphonomic distortion on original fossil shape is discussed as are current and future methods for quantifying and accounting for distortion with the goal of reducing the taphonomic noise to biological signal ratio. Finally, the future of morphometrics in nonavian dinosaur paleobiology is discussed as paleobiologists move into a “virtual paleobiology” framework, whereby digital renditions of fossils are captured via methods such as photogrammetry and computed tomography. These primary data form the basis for three‐dimensional (3D) geometric morphometric analyses along with a slew of other forms of analyses. These 3D specimen data form part of the extended specimen and help to democratize paleobiology, unlocking the specimen from the physical museum and making the specimen available to researchers across the world.