Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The cylindrical computer-generated hologram (CCGH), featuring a 360° viewing zone, has garnered widespread attention. However, the issue of high-order diffraction images due to pixelated structure in CCGH has not been previously reported and solved. For a cylindrical model offering a 360° viewing zone in the horizontal direction, the high-order diffraction images always overlap with the reconstruction image, leading to quality degradation. Furthermore, the 4f system is commonly used to eliminate high-order diffraction images in planar CGH, but its implementation is predictably complex for a cylindrical model. In this paper, we propose a solution to the issue of high-order diffraction images for CCGH. We derive the cylindrical diffraction formula from the outer hologram surface to the inner object surface in the spectral domain, and based on this, we subsequently analyze the effects brought by the pixel structure and propose the high-order diffraction model. Based on the proposed high-order diffraction model, we use the gradient descent method to optimize CCGH accounting for all diffraction orders simultaneously. Furthermore, we discuss the issue of circular convolution due to the periodicity of the Fast Fourier Transform (FFT) in cylindrical diffraction. The correctness of the proposed high-order diffraction model and the effectiveness of the proposed optimization method are demonstrated by numerical simulation. To our knowledge, this is the first time that the issue of high-order diffraction images in CCGH has been proposed, and we believe our solution can offer valuable guidance to practitioners in the field.
The cylindrical computer-generated hologram (CCGH), featuring a 360° viewing zone, has garnered widespread attention. However, the issue of high-order diffraction images due to pixelated structure in CCGH has not been previously reported and solved. For a cylindrical model offering a 360° viewing zone in the horizontal direction, the high-order diffraction images always overlap with the reconstruction image, leading to quality degradation. Furthermore, the 4f system is commonly used to eliminate high-order diffraction images in planar CGH, but its implementation is predictably complex for a cylindrical model. In this paper, we propose a solution to the issue of high-order diffraction images for CCGH. We derive the cylindrical diffraction formula from the outer hologram surface to the inner object surface in the spectral domain, and based on this, we subsequently analyze the effects brought by the pixel structure and propose the high-order diffraction model. Based on the proposed high-order diffraction model, we use the gradient descent method to optimize CCGH accounting for all diffraction orders simultaneously. Furthermore, we discuss the issue of circular convolution due to the periodicity of the Fast Fourier Transform (FFT) in cylindrical diffraction. The correctness of the proposed high-order diffraction model and the effectiveness of the proposed optimization method are demonstrated by numerical simulation. To our knowledge, this is the first time that the issue of high-order diffraction images in CCGH has been proposed, and we believe our solution can offer valuable guidance to practitioners in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.