Accounting for poro-mechanical effects in full-field reservoir simulation studies and uncertainty quantification workflows using complex reservoir models is challenging, mainly because of the high computational cost. We hence introduce an alternative approach that couples hydrodynamics through existing flow diagnostics simulations with poro-mechanics to screen the impact of coupled poro-mechanical processes on reservoir performance without significantly increasing computational overheads. In flow diagnostics, time-of-flight distributions and influence regions can be used to characterise the flow field in the reservoir, which depends on the distribution of petrophysical properties that are altered due to production-induced changes in pore pressure and effective stress. These extended flow diagnostics calculations hence enable us to quickly screen how the dynamics in the reservoirs (e.g. reservoir connectivity, displacement efficiency, and well allocation factors) are affected by the complex interactions between poro-mechanics and hydrodynamics. Our poro-mechanically informed flow diagnostics account for steady-state and single-phase flow conditions based on the poro-elastic theory and assume that the reservoir does not contain fractures. Fluid flow and rock deformation calculations are coupled sequentially. The equations are discretised using a finite-volume method with two-point flux-approximation and the virtual element method, respectively. The solution of the coupled system considers stress-dependent permeabilities. Due to the steady-state nature of the calculations and the effective proposed coupling strategy, these calculations remain computationally efficient while providing first-order approximations of the interplay between poro-mechanics and hydrodynamics, as we demonstrate through a series of case studies. The extended flow diagnostic approach hence provides an efficient complement to traditional reservoir simulation and uncertainty quantification workflows and enable us to assess a broader range of reservoir uncertainties.