2016
DOI: 10.4310/gic.2016.v3.n1.a1
|View full text |Cite
|
Sign up to set email alerts
|

Fast spherical quasiconformal parameterization of genus-$0$ closed surfaces with application to adaptive remeshing

Abstract: Surface parameterization plays a fundamental role in many science and engineering problems. In particular, as genus-0 closed surfaces are topologically equivalent to a sphere, many spherical parameterization methods have been developed over the past few decades. However, in practice, mapping a genus-0 closed surface onto a sphere may result in a large distortion due to their geometric difference. In this work, we propose a new framework for computing ellipsoidal conformal and quasi-conformal parameterizations … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
3
2

Relationship

4
6

Authors

Journals

citations
Cited by 18 publications
(7 citation statements)
references
References 52 publications
0
7
0
Order By: Relevance
“…For future work, we plan to explore the possibility of extending our method for quasiconformal parameterizations and mappings [43][44][45]. More specifically, note that the partial welding step in our proposed method is conformal, and the quasi-conformal dilatation of a map is preserved under the composition with conformal maps.…”
Section: Discussionmentioning
confidence: 99%
“…For future work, we plan to explore the possibility of extending our method for quasiconformal parameterizations and mappings [43][44][45]. More specifically, note that the partial welding step in our proposed method is conformal, and the quasi-conformal dilatation of a map is preserved under the composition with conformal maps.…”
Section: Discussionmentioning
confidence: 99%
“…Our proposed VDERM method can also be applied for remeshing, which aims at improving the discretization of meshes [25,26]. More specifically, suppose our goal is to construct a tetrahedral mesh for a genus-0 closed surface.…”
Section: Adaptive Remeshingmentioning
confidence: 99%
“…Area information has also been utilized in the computation of optimal mass transport maps [21,22,50] and density-equalizing maps [10,16,17]. More recently, quasi-conformal mappings have become increasingly popular for the development of non-rigid image registration [31,47] and surface mapping methods [12,13,19,32,37], with applications to geometry processing [7,11,14], biological shape analysis [8,15] and medical visualization [9,18]. Specifically, quasi-conformal theory allows one to ensure the bijectivity and reduce the local geometric distortion of the mappings.…”
Section: Introductionmentioning
confidence: 99%