Artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) is a general-purpose method that was shown to achieve high accuracy for many applications with a speed close to its baseline semiempirical quantum mechanical (SQM) method ODM2*. Here, we evaluate the, hitherto unknown, performance of out-of-the-box AIQM1 without any refitting for reaction barrier heights on 8 datasets including in total ca. 24 thousand reactions. This evaluation shows that AIQM1's accuracy strongly depends on the type of transition state and ranges from excellent for rotation barriers to poor for, e.g., pericyclic reactions. AIQM1 clearly outperforms its baseline ODM2* method and even more so, a popular universal potential ANI-1ccx. Overall, however, AIQM1 accuracy largely remains at the level of SQM methods suggesting that it is desirable to focus on improving AIQM1 performance for barrier heights in the future. We also show that the built-in uncertainty quantification helps in identifying confident predictions. The accuracy of confident AIQM1 predictions is approaching the level of popular DFT methods for most reaction types. Encouragingly, AIQM1 is rather robust for transition state optimizations even for the type of reactions it struggles with the most. Single-point calculations with high-level methods on AIQM1-optimized geometries can be used to significantly improve barrier heights which cannot be said for its baseline ODM2* method.