Fasteners quantitative detection and lightweight deployment based on improved YOLOv8
Tangbo Bai,
Jiaming Duan,
Ying Wang
et al.
Abstract:Currently, research on on-board real-time quantitative detection of rail fasteners is few. Therefore, this paper proposes and validates an improved YOLOv8 based method for quantitative detection of rail fasteners, leveraging the capabilities of edge miniaturized artificial intelligence (AI) computing devices. First, the lightweight MobileNetV3 is employed as the backbone network for our model to increase detection speed, and the SA attention mechanism is integrated at the end of the backbone network to enhance… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.