2022
DOI: 10.48550/arxiv.2204.09949
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Faster Approximate Covering of Subcurves under the Fréchet Distance

Abstract: Subtrajectory clustering is an important variant of the trajectory clustering problem, where the start and endpoints of trajectory patterns within the collected trajectory data are not known in advance. We study this problem in the form of a set cover problem for a given polygonal curve: find the smallest number k of representative curves such that any point on the input curve is contained in a subcurve that has Fréchet distance at most a given ∆ to a representative curve. We focus on the case where the repres… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?