In this paper, we design a novel two-phase unsourced random access (URA) scheme in massive multiple input multiple output (MIMO). In the first phase, we collect a sequence of information bits to jointly acquire the user channel state information (CSI) and the associated information bits. In the second phase, the residual information bits of all the users are partitioned into sub-blocks with a very short length to exhibit a higher spectral efficiency and a lower computational complexity than the existing transmission schemes in massive MIMO URA. By using the acquired CSI in the first phase, the sub-block recovery in the second phase is cast as a compressed sensing (CS) problem. From the perspective of the statistical physics, we provide a theoretical framework for our proposed URA scheme to analyze the induced problem based on the replica method. The analytical results show that the performance metrics of our URA scheme can be linked to the system parameters by a single-valued free entropy function. An AMP-based recovery algorithm is designed to achieve the performance indicated by the proposed theoretical framework. Simulations verify that our scheme outperforms the most recent counterparts.