This review aims at introducing an engineering field of lubrication to researchers who are not familiar with tribology, thereby emphasizing the importance of lubricant chemistry in applied science. It provides initial guidance regarding additive chemistry in lubrication systems for researchers with different backgrounds. The readers will be introduced to molecular sciences underlying lubrication engineering. Currently, lubricant chemistry, especially "additive technology", looks like a very complicated field. It seems that scientific information is not always shared by researchers. The cause of this is that lubrication engineering is based on empirical methods and focuses on market requirements. In this regard, engineering knowhow is held by individuals and is not being disclosed to scientific communities. Under these circumstances, a bird's-eye view of lubricant chemistry in scientific words is necessary. The novelty of this review is to concisely explain the whole picture of additive technology in chemical terms. The roles and functions of additives as the leading actors in lubrication systems are highlighted within the scope of molecular science. First, I give an overview of the fundamental lubrication model and the role of lubricants in machine operations. The existing additives are categorized by the role and work mechanism in lubrication system. Examples of additives are shown with representative molecular structure. The second half of this review explains the scientific background of the lubrication engineering. It includes interactions of different components in lubrication systems. Finally, this review predicts the technical trends in lubricant chemistry and requirements in molecular science. This review does not aim to be a comprehensive chart or present manufacturing knowhow in lubrication engineering. References were carefully selected and cited to extract "the most common opinion" in lubricant chemistry and therefore many engineering articles were omitted for conciseness.