Environmental observations of antibiotics and other pharmaceuticals have received attention as indicators of an urbanizing global water cycle. When connections between environment and development of antibiotic resistance (ABR) are considered, it is increasingly important to understand the life cycle of antibiotics. Here we examined the global occurrence of erythromycin (ERY) in: 1. wastewater effluent, inland waters, drinking water, groundwater, and estuarine and coastal systems; 2. sewage sludge, biosolids and sediments; and 3. tissues of aquatic organisms. We then performed probabilistic environmental hazard assessments to identify probabilities of exceeding the predicted no-effect concentration (PNEC) of 1.0 μg L for promoting ABR, based on previous modeling of minimum inhibitory concentrations and minimal selective concentrations of ERY, and measured levels from different geographic regions. Marked differences were observed among geographic regions and matrices. For example, more information was available for water matrices (312 publications) than solids (97 publications). ERY has primarily been studied in Asia, North America and Europe with the majority of studies performed in China, USA, Spain and the United Kingdom. In surface waters 72.4% of the Asian studies have been performed in China, while 85.4% of the observations from North America were from the USA; Spain represented 41.9% of the European surface water studies. Remarkably, results from PEHAs indicated that the likelihood of exceeding the ERY PNEC for ABR in effluents was markedly high in Asia (33.3%) followed by Europe (20%) and North America (17.8%). Unfortunately, ERY occurrence data is comparatively limited in coastal and marine systems across large geographic regions including Southwest Asia, Eastern Europe, Africa, and Central and South America. Future studies are needed to understand risks of ERY and other antibiotics to human health and the environment, particularly in developing regions where waste management systems and treatment infrastructure are being implemented slower than access to and consumption of pharmaceuticals is occurring.