Weld related fatigue failure is one of the most common concerns in welded structures. From the fatigue design point of view, weld toe failure is preferable to weld root failure. Base plate thickness is a controlling parameter for weld toe failure, while weld metal size is a controlling parameter for weld root failure. However, controlling the weld metal size is not easy because the actual weld penetration and weld leg size vary along a weld and from weld to weld. Therefore, analyzing fatigue test data for weld root failure tends to enlarge scatter band due to variability in weld penetration and weld leg size when the nominal weld size is considered. The structural stress based weld fatigue master S-N curve adopted by 2007 ASME section VIII Div. 2 and new API 5791 ASME EES-I was constructed by incorporating only clearly defined weld toe fatigue data. In this article, a simplified structural stress procedure was developed and a design master S-N curve for weld root failure was established based on the published fatigue test data. Consequently, the mean design master S-N curve for weld root failure is downshifted relative to the mean master S-N curve for weld toe failure, and has a wider scatter band. To be conser-vative, a crack path along weld throat is recommended for structural stress calculation. Also, the transverse shear stress effects on structural stress calculation can be ignored.
Journal of Offshore Mechanics and Arctic Engineering