Stress concentrations are present at cut-outs, notches, and generally at free edges in woven CFRP structures. Under cyclic loading, damage initiates from these stress raisers and progresses into the laminate, leading to strength reduction and structural failure.The present contribution provides a literature review summarizing analytical, experimental and numerical investigations regarding damage initiation and propagation in the presence of free edges and at notches in thin plain-woven 2D CFRP laminates. For free edges, initiation of damage is given as interlaminar matrix cracking. Modelling approaches for the progression by cohesive zone models or linear-elastic fracture mechanics are summarized. Recent advances using image correlation and numerical modelling are presented. In terms of notches, a brief survey of relevant literature is given, followed by a more detailed treatment of the damage progression originating from a circular hole. Additionally, the shortcomings of standard specimens with holes for fatigue damage progression investigations are addressed, since both mechanisms, damage from the free edge and the hole, interact. Latest research to uniquely identify the damage emanating from the hole is presented.