UD glass/PA6 coupons with an open hole are subjected to tensile and compressive loading. Three layups: [0/90]5s, [+45/−45]5s and [+45/0/−45/90]3s with a shape based on ASTM D5766 were tested. Both monotonic loading as well as loading–unloading–reloading tests were executed. The strain field on the sample surface was measured with digital image correlation. This allowed identifying the distribution of the strain field during loading, permanent deformation and the evolution of the sample elastic modulus. This information is not frequently measured. Yet, it is vital for the development and validation of advanced failure models. The results indicate that the thermoplastic matrix allows large plastic deformation under tensile loading for the specimens with layup [+45/−45]5s. In addition, the specimen elastic modulus reduces by about 70%. The other layups show minor permanent deformation, while the elastic modulus reduces by up to 15%. Furthermore, the quasi-isotropic laminate shows a significant post-failure load-bearing capacity under compression loading. The results are complemented with post-mortem damage and fracture observations using optical microscopy and ultrasound inspection.