The present work is to study the production and characterization of biochar produced at two different temperatures (400 and 900 °C) and its influence on the interaction of biochar with elastomers of different polarity, aiming at the replacement of carbon black in elastomer compounds, based on the rheometric, physical, chemical and mechanical properties. The biochar production temperature of 900 ºC affected the optimum vulcanization time (t 90 ), with compounds containing NR and NBR having the shortest vulcanization times because temperatures above 400 ºC produce an alkaline biochar that accelerates vulcanization. The biochar interacted with the two elastomers, being superior to NBR due to the oxygen concentration. Therefore, the blends with biochar showed a demonstrated reinforcement of the tensile strength, even if the biochar had a surface area of 3 m 2 .g -1 for the observed irregular surface, in addition to the mechanical properties, analogous to the blends with carbon black.