The current research studied the effects of laser surface hardening treatment on the phase transformation and wear properties of gray cast irons heat treated by austempering or quench-tempering, respectively. Three austempering temperatures of 232 °C, 288 °C, and 343 °C with a constant holding duration of 120 min and three tempering temperatures of 316 °C, 399 °C, and 482 °C with a constant holding duration of 60 min were utilized to prepare austempered and quench-tempered gray cast iron specimens with equivalent macro-hardness values. A ball-on-flat reciprocating wear test configuration was used to investigate the wear resistance of austempered and quench-tempered gray cast iron specimens before and after applying laser surface-hardening treatment. The phase transformation, hardness, mass loss, and worn surfaces were evaluated. There were four zones in the matrix of the laser-hardened austempered gray cast iron. Zone 1 contained ledeburite without the presence of graphite flakes. Zone 2 contained martensite and had a high hardness, which was greater than 67 HRC. Zone 4 was the substrate containing the acicular ferrite and carbon-saturated austenite with a hardness of 41–27 HRC. In Zone 3, the substrate was tempered by the low thermal radiation. For the laser-hardened quench-tempered gray cast iron specimens, three zones were observed beneath the laser-hardened surface. Zone 1 also contained ledeburite, and Zone 2 was full martensite. Zone 3 was the substrate containing the tempered martensite. The tempered martensite became coarse with increasing tempering temperature due to the decomposition of the as-quenched martensite and precipitation of cementite particles. In the wear tests, the gray cast iron specimens without heat treatment had the highest wear loss. The wear performance was improved by applying quench-tempering heat treatment and further enhanced by applying austempering heat treatment. Austempered gray cast iron specimens had lower mass loss than the quench-tempered gray cast iron specimens, which was attributed to the high fracture toughness of acicular ferrite and stable austenite. After utilizing the laser surface hardening treatment, both austempered and quench-tempered gray cast iron specimens had decreased wear loss due to the high surface protection provided by the ledeburitic and martensitic structures with high hardness. In the worn surfaces, it was found that cracks were the dominant wear mechanism. The results of this work have significant value in the future applications of gray cast iron engineering components and provide valuable references for future studies on laser-hardened gray cast iron.