The fatigue performance of polypropylene (PP) at various amplitudes and frequencies on fatigue cycles under tensile test conditions is investigated in this study. The results show that increasing the frequency leads to a decrease in fatigue cycles due to increased cycle time. The decline rate can be divided into two stages, between 1 and 5 Hz. The first stage rapidly decreases fatigue performance as the frequency increases from 1 Hz to 2 Hz or 3 Hz. The second stage has a lower reduction rate, which occurs between 2 Hz or 3 Hz and 5 Hz due to the strengthening effect of increasing frequency. Furthermore, increasing the amplitude from 0.1 mm to 0.4 mm reduces the fatigue cycle due to the higher deformation rate. In summary, expanding both amplitude and frequency reduces the fatigue performance of the PP material. Moreover, according to the scanning electron microscope microstructure, increasing the frequency results in more microcracks in the polymer matrix.