Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Underwater monitoring presents challenges related to maintaining a continuous power supply and communication, necessitating the use of a smaller number of sensors to effectively cover the entire line. An underwater line tracking method is proposed to evaluate global behaviors and stresses in real time. The method employs angles at several points on the line, as well as displacements and curvatures at both ends. In this method, any line displacement, angle, and curvature are expressed as Fourier series, and Fourier coefficients are obtained by utilizing sensor data. Then, the behavior of any line location is assessed. In addition, to reduce the number of sensors and improve accuracy, optimal inclinometer locations are determined by a genetic algorithm. The proposed line tracking algorithm was validated through two numerical examples; one with an inclined tunnel and one with a marine steel catenary riser attached to a Floating Production Storage and Offloading (FPSO) vessel. Through these examples, the proposed algorithm was proven to capture global behaviors accurately when optimally located sensors are used. In the riser monitoring case, the optimized sensor placement with eight intermediate sensors achieved an average mean distance error of 1.91 m, which is lower than the 2.65 m error obtained with ten intermediate sensors without optimization.
Underwater monitoring presents challenges related to maintaining a continuous power supply and communication, necessitating the use of a smaller number of sensors to effectively cover the entire line. An underwater line tracking method is proposed to evaluate global behaviors and stresses in real time. The method employs angles at several points on the line, as well as displacements and curvatures at both ends. In this method, any line displacement, angle, and curvature are expressed as Fourier series, and Fourier coefficients are obtained by utilizing sensor data. Then, the behavior of any line location is assessed. In addition, to reduce the number of sensors and improve accuracy, optimal inclinometer locations are determined by a genetic algorithm. The proposed line tracking algorithm was validated through two numerical examples; one with an inclined tunnel and one with a marine steel catenary riser attached to a Floating Production Storage and Offloading (FPSO) vessel. Through these examples, the proposed algorithm was proven to capture global behaviors accurately when optimally located sensors are used. In the riser monitoring case, the optimized sensor placement with eight intermediate sensors achieved an average mean distance error of 1.91 m, which is lower than the 2.65 m error obtained with ten intermediate sensors without optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.