The basic information required to utilize one of possible computation tools/algorithms (mainly the evolution strategy) to solve a wide class of real practical engineering optimization problems is presented and discussed in the present paper. The effectiveness of the considered method is demonstrated by the possibility of the use of different form of objective functions, various and numerous nonlinear constraints and different types of design variables (continuous, discrete, real, integer). The sensitivity of the algorithm to the choice of the evolution strategy parameters is also discussed herein. The generality of the evolution strategy is illustrated by the analysis of various examples dealing with: the design of helical springs, the buckling of cylindrical composite panels and the buckling of pressure vessels with domed heads. Keywords optimal design; evolutionary algorithms, buckling; plated and cylindrical composite panels; pressure vessels, helical springs, strength of laminates.