An explicit analytical solution for an elliptical hole in an infinite elastic plate is derived for uniaxial load from the earliest work on this configuration. This is used along with the biaxial loading case and more recent solutions, available in curvilinear coordinates, to transform the stress fields into Cartesian coordinates along the x and y axes, reducing the curvilinear solutions to simplified short-form expressions of x and y. The present closed-form results are the functions of polynomials of the second and third order of x or y along the x or y axes, respectively, and have the most concise form to the best of the authors’ knowledge. The displacements for plain stress condition are calculated directly from the present stress field expressions, as functions of second-order polynomials of x or y and demonstrate overall consistency. Application of the present stress field and displacements results to special cases, such as a circular hole, a crack, and an elliptical hole in a pressurized cylindrical shell, are shown to agree with published solutions where available.