2018
DOI: 10.1111/ffe.12945
|View full text |Cite
|
Sign up to set email alerts
|

Fatigue life prediction for vibration isolation rubber based on parameter‐optimized support vector machine model

Abstract: Given the small sample size, nonlinearity, and large dispersion of the measured data of fatigue performance for vibration isolation rubbers, the fatigue life prediction model for vibration isolation rubber materials was established using a support vector machine (SVM). A modified gravity search algorithm (MGSA) is proposed to optimize the parameters of the SVM. Using environmental temperature, the Rockwell hardness of the rubber compound, and the engineering strain peak as the input variables, the model was tr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
15
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 35 publications
(15 citation statements)
references
References 21 publications
0
15
0
Order By: Relevance
“…Article/conference paper Publications using genetic algorithms Article Ma et al, 34 Zhang and Lin, 38 Vadood et al, 43 Liu et al, 46 Lotfi and Beiss, 49 Majidian and Saidi, 56 Gao et al, 76 Canyurt, 89 Karakas et al, 90 Chen et al, 91 Kamal et al, 92 Zhang et al, 93 Agius et al 94 and Deveci and Artem 95 Conference paper Susmikanti, 17 Rohman et al, 18 Cai et al, 30 Zhaohua, 35 Tian 79 and Xu and Cui 96 prediction method for different purposes, such as the creation of constant life diagrams. Mohanty et al 101 estimated the fatigue crack growth rate of aluminium alloys (2024-T3) using GP and ANN, whereas GP provided a higher precision than ANN.…”
Section: T a B L E 4 Genetic Algorithms Adapted For Estimating Fatigumentioning
confidence: 99%
See 4 more Smart Citations
“…Article/conference paper Publications using genetic algorithms Article Ma et al, 34 Zhang and Lin, 38 Vadood et al, 43 Liu et al, 46 Lotfi and Beiss, 49 Majidian and Saidi, 56 Gao et al, 76 Canyurt, 89 Karakas et al, 90 Chen et al, 91 Kamal et al, 92 Zhang et al, 93 Agius et al 94 and Deveci and Artem 95 Conference paper Susmikanti, 17 Rohman et al, 18 Cai et al, 30 Zhaohua, 35 Tian 79 and Xu and Cui 96 prediction method for different purposes, such as the creation of constant life diagrams. Mohanty et al 101 estimated the fatigue crack growth rate of aluminium alloys (2024-T3) using GP and ANN, whereas GP provided a higher precision than ANN.…”
Section: T a B L E 4 Genetic Algorithms Adapted For Estimating Fatigumentioning
confidence: 99%
“…Benchmarking Marquardt and Zenner, 27 Mathur et al, 29 Liao et al, 31 Artymiak et al 51 and Kim et al 133 Case study Yang et al, 1 Al Assaf and El Kadi, 12 Bezazi et al, 13 Salmalian et al, 14 Figueira Pujol and Andrade Pinto, 15 Salmalian et al, 16 Rohman et al, 18 Kong et al, 19 Han, 20 Aymerich and Serra, 21 Venkatesh and Rack, 22 Pleune and Chopra, 23 Sohn and Bae, 24 Genel, 25 Junior et al, 26 Vassilopoulos et al, 28 Cai et al, 30 Al-Assadi et al, 32 Kumar et al, 33 Ma et al, 34 Zhaohua, 35 Xu et al, 36 Barsoum et al, 37 Zhang and Lin, 38 Mohanty et al, 40 Uygur et al, 41 Xiang et al, 42 Vadood et al, 43 Mishra et al, 44 Mohanty, 45 Liu et al, 46 Martinez and Ponce, 47 Barbosa et al, 48 Lotfi and Beiss, 49 Razzaq et al, 50 Srinivasan et al, 52 Al-Assaf and El Kadi, 53 Park and Kang, 54 Vassilopoulos et al, 55 Majidian and Saidi,…”
Section: Datasets Publicationsmentioning
confidence: 99%
See 3 more Smart Citations