The article presents the results of adapting the digital image correlation method for the possibility of diagnosing reinforced concrete structures. Reinforced concrete (RC) bending elements are the most widely used in construction practice, which determines the importance of reliable estimation of their stress-strain state. The purpose of this study includes reliable theoretical and experimental investigation of the strength and deformability parameters of the RC beam. The experimental study was conducted using digital image correlation and sub-micron contactless gauges. Experimental data was verified with the calculation of the stress-strain state of the RC beam according to DBN V.2.6-98:2009 and Eurocode 2 and the finite-element modelling (FEM). As a result, the values of deflections, concrete and rebar strains were obtained and presented as corresponding diagrams. The results of all the methods are within the same ranges. Also, the form and character of corresponding diagrams are very similar. The indicated deviations were within acceptable limits. It was noted that the theoretical calculation generally provides lower strain values, which is a satisfactory result, as it indicates the bearing capacity reserves provided by the current regulations. The propagation of cracks was monitored during the experiment and the measured cracks opening was compared with theoretical assumptions. Theoretical values are higher than experimental, which shows certain conservativity of valid normative regulations. The experimental and theoretical results were in good correspondence, which confirms their reliability. It was concluded, that the proposed in the study complex theoretic-experimental approach provides essential information about the strength and deformability of the structure.