An attempt has been made to investigate the microstructures and wear behavior of magnesium alloy AM100 (Mg-Al-Mn) based composites reinforced with 7 vol. % of ZrB2, graphite or hybrid of (1:1) ZrB2 and graphite particles as well as the unreinforced magnesium alloy. Magnesium alloy was melt under shield of inert gases and composites were prepared using stir casting method. Optical microscopy was used to study the microstructures of the unreinforced alloy and composites. The composites characterized primarily by the uniform distribution of particles in the matrix and a good adherence between the particles and matrix. XRD analysis was used to identify the phases of the unreinforced alloy and composites. The XRD diffraction pattern of AM100 matrix reveals different phases, namely, Mg, AlMn and Al12Mg17. Formation of these phases is due to the reaction between alloy constituents. Dry sliding wear tests were conducted by using a pin-on-ring apparatus. The wear rates of the composites and matrix alloy were measured at loads of 10, 20 and 30 N, and sliding speed of 0.7 m/s. The worn surfaces of the composite pins were examined by scanning electron microscopy (SEM). The experimental results of the wear tests showed that the magnesium based composites exhibited higher wear rate at all the applied loads when compared to those of the unreinforced magnesium alloy. The ZrB2 reinforced magnesium composite exhibited the lowest wear rate amongst the composites material investigated in the present work.