In this paper, high cycle fatigue failure behavior of steel Loadcarrying Cruciform Welded Joints (LCWJ) is assessed by means of local approaches. Different analytical solutions for weld toe and weld root are extended and applied to illustrate the effects of LCWJ geometry under cycle tension and bending based on Notch Stress Intensity Factors (NSIFs). The extended analytical solutions are validated by comparing finite element data from several simulations in terms of LCWJ models, resulting in a good agreement. A bulk of experimental data taken from tests and the literature is calculated by the proposed solutions as the forms of SED, NSIF and Peak Stress Method (PSM). The results show that the NSIF-based analytical solutions for steel LCWJ are effective for high cycle fatigue failure analyses.