BackgroundInfectious disease incidence is often male-biased. Two main hypotheses have been proposed to explain this observation. The physiological hypothesis (PH) emphasizes differences in sex hormones and genetic architecture, while the behavioral hypothesis (BH) stresses gender-related differences in exposure. Surprisingly, the population-level predictions of these hypotheses are yet to be thoroughly tested in humans.Methods and FindingsFor ten major pathogens, we tested PH and BH predictions about incidence and exposure-prevalence patterns. Compulsory-notification records (Brazil, 2006–2009) were used to estimate age-stratified ♂:♀ incidence rate ratios for the general population and across selected sociological contrasts. Exposure-prevalence odds ratios were derived from 82 published surveys. We estimated summary effect-size measures using random-effects models; our analyses encompass ∼0.5 million cases of disease or exposure. We found that, after puberty, disease incidence is male-biased in cutaneous and visceral leishmaniasis, schistosomiasis, pulmonary tuberculosis, leptospirosis, meningococcal meningitis, and hepatitis A. Severe dengue is female-biased, and no clear pattern is evident for typhoid fever. In leprosy, milder tuberculoid forms are female-biased, whereas more severe lepromatous forms are male-biased. For most diseases, male bias emerges also during infancy, when behavior is unbiased but sex steroid levels transiently rise. Behavioral factors likely modulate male–female differences in some diseases (the leishmaniases, tuberculosis, leptospirosis, or schistosomiasis) and age classes; however, average exposure-prevalence is significantly sex-biased only for Schistosoma and Leptospira.ConclusionsOur results closely match some key PH predictions and contradict some crucial BH predictions, suggesting that gender-specific behavior plays an overall secondary role in generating sex bias. Physiological differences, including the crosstalk between sex hormones and immune effectors, thus emerge as the main candidate drivers of gender differences in infectious disease susceptibility.