The red king crab, Paralithodes camtschaticus, was introduced into the Barents Sea where, after a period of 30 years of adaptation, it has established a new population. This population has been commercially exploited over the past two decades, supporting profitable fisheries in both Russia and Norway. Biochemical studies aimed at assessing fatty acid profiles have been conducted, focusing primarily on the edible parts of red king crabs. Only recently have by-products been included in this research. Capture of female red king crabs is prohibited in Russia but is allowed in Norway. The fatty acids of the egg masses carried by these females have not yet been studied. To fill this knowledge gap, we assayed the fatty acid composition of eggs using gas–liquid chromatography. Our results showed a predominance of polyunsaturated fatty acids, while the concentrations of saturated and monounsaturated fatty acids were similar. Multivariate comparisons showed no significant differences in fatty acid profiles in terms of egg developmental stage (nauplius vs. metanauplius), habitat conditions (soft vs. hard bottoms), female size class, or number of autotomized limbs. However, individual comparisons showed some differences in fatty acids, the most important being the lower content of docosahexaenoic acid in eggs at the metanauplius stage compared to eggs at the nauplius stage, which is likely due to its essential role in the development of red king crab embryos. The total fatty acid content (53.94 mg g−1) was 2–87 times higher in eggs than in other red king crab tissues, confirming the critical role that fatty acids play in maintaining physiological processes during vitellogenesis. The high content of essential fatty acids and an optimal omega-3-to-omega-6 ratio (4.9) suggest that red king crab eggs are a good product for a healthy diet and a valuable source for extracting essential fatty acids.