We have developed an interpretive seismic workflow that incorporates multicomponent seismic inversion, guided by structural mapping, for characterizing low-permeability unconventional reservoirs. The workflow includes the determination of a calibrated time-depth relationship, generation of seismic-derived structural maps, poststack inversion, amplitude-variation-with-offset analysis, and PP-PS joint inversion. The subsequent interpretation procedure combines structural and inversion results with seismic-derived lithologic parameters, such as the Young’s modulus, Poisson’s ratio, and brittleness index. We applied this workflow to a 3D multicomponent seismic data set from the Duvernay play in the Kaybob area in Alberta, Canada. Subtle faults are discernible using isochron maps, horizontal time slices, and seismic stratal slices. Fault-detection software is also used to aid in the delineation of structural discontinuities. We found that seismic-derived attributes, coupled with structural mapping, can be used to map reservoir facies and thus to highlight zones that are most favorable for hydraulic-fracture stimulation. By imaging structural discontinuities and preexisting zones of weakness, seismic mapping also contributes to an improved framework for understanding the induced-seismicity risk.