Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accurate fault diagnosis in nuclear power systems is essential for ensuring reactor stability, reducing the risk of potential faults, enhancing system reliability, and maintaining operational safety. Traditional diagnostic methods, especially those based on single-system approaches, struggle to address the complexities of composite faults and highly coupled fault data. In this paper, we introduce a distributed fault diagnosis method for nuclear power systems that leverages the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and a modified MobileNetV3 neural network with a Bottleneck Attention Module (MMBB). The SPEA2 algorithm is used to optimize sensor feature selection, and the sensor data are then input into the MMBB model for training. The MMBB model outputs accuracy rates for each subsystem and the overall system, which are subsequently used as optimization targets to guide SPEA2 in refining the sensor selection process for distributed diagnosis. The experimental results demonstrate that this method significantly enhances subsystem accuracy, with an average accuracy of 98.73%, and achieves a comprehensive system accuracy of 95.22%, indicating its superior performance compared to traditional optimization and neural network-based approaches.
Accurate fault diagnosis in nuclear power systems is essential for ensuring reactor stability, reducing the risk of potential faults, enhancing system reliability, and maintaining operational safety. Traditional diagnostic methods, especially those based on single-system approaches, struggle to address the complexities of composite faults and highly coupled fault data. In this paper, we introduce a distributed fault diagnosis method for nuclear power systems that leverages the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and a modified MobileNetV3 neural network with a Bottleneck Attention Module (MMBB). The SPEA2 algorithm is used to optimize sensor feature selection, and the sensor data are then input into the MMBB model for training. The MMBB model outputs accuracy rates for each subsystem and the overall system, which are subsequently used as optimization targets to guide SPEA2 in refining the sensor selection process for distributed diagnosis. The experimental results demonstrate that this method significantly enhances subsystem accuracy, with an average accuracy of 98.73%, and achieves a comprehensive system accuracy of 95.22%, indicating its superior performance compared to traditional optimization and neural network-based approaches.
Accurate recognition of tool state is important for maximizing tool life. However, the tool sensor data collected in real-life scenarios has unbalanced characteristics. Additionally, although graph neural networks (GNNs) show excellent performance in feature extraction in the spatial dimension of data, it is difficult to extract features in the temporal dimension efficiently. Therefore, we propose a tool state recognition method based on the Pruned Optimized Graph Neural Network-Gated Recurrent Unit (POGNN-GRU) under unbalanced data. Firstly, design the Improved-Majority Weighted Minority Oversampling Technique (IMWMOTE) by introducing an adaptive noise removal strategy and improving the MWMOTE to alleviate the unbalanced problem of data. Subsequently, propose a POG graph data construction method based on a multi-scale multi-metric basis and a Gaussian kernel weight function to solve the problem of one-sided description of graph data under a single metric basis. Then, construct the POGNN-GRU model to deeply mine the spatial and temporal features of the data to better identify the state of the tool. Finally, validation and ablation experiments on the PHM 2010 and HMoTP datasets show that the proposed method outperforms the other models in terms of identification, and the highest accuracy improves by 1.62% and 1.86% compared with the corresponding optimal baseline model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.