T. (2015) 'Predictive inference for system reliability after common-cause component failures.', Reliability engineering system safety., 135 . pp. 27-33. Further information on publisher's website:http://dx.doi.org/10.1016/j.ress. 2014.11.005 Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Reliability Engineering System Safety. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in Reliability Engineering System Safety, 135, March 2015, 10.1016/j.ress.2014.11.005.
Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractThis paper presents nonparametric predictive inference for system reliability following common-cause failures of components. It is assumed that a single failure event may lead to simultaneous failure of multiple components. Data consist of frequencies of such events involving particular numbers of components. These data are used to predict the number of components that will fail at the next failure event. The effect of failure of one or more components on the system reliability is taken into account through the system's survival signature. The predictive performance of the approach, in which uncertainty is quantified using lower and upper probabilities, is analysed with the use of ROC curves. While this approach is presented for a basic scenario of a system consisting of only a single type of components and without consideration of failure behaviour over time, it provides many opportunities for more general modelling and inference, these are briefly discussed together with the related research challenges.