2018
DOI: 10.1504/ijmic.2018.10010550
|View full text |Cite
|
Sign up to set email alerts
|

Fault diagnosis and fault tolerant control for the non-Gaussian nonlinear stochastic distribution control system using Takagi-Sugeno fuzzy model

Abstract: For the non-Gaussian nonlinear stochastic distribution control system using Takagi-Sugeno fuzzy model, the nonlinear dynamic system is converted to a linear system. A fault diagnosis algorithm using RBF neural network and a sliding mode fault tolerant control algorithm is presented. A new adaptive fault diagnosis algorithm is adopted to diagnose the gradual fault that occurred in the system, and the stability of the observation error system is proved. Differential evolution (DE) algorithm is used to optimise t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance