2006
DOI: 10.4197/eng.17-1.7
|View full text |Cite
|
Sign up to set email alerts
|

Fault Diagnosis of a Hydraulic Power System Using an Artificial Neural Network

Abstract: This paper deals with the problem of fault detection, isolation and identification of a hydraulic power system. A proposed fault diagnostic scheme (FDS) using an artificial neural network (ANN) is investigated. A feedforward neural network is employed to diagnose two commonly occurring faults of the hydraulic power system: actuator internal leakage and valve spool blockage. The characterizing model of each fault is derived. The fault diagnostic scheme is applied to a hydraulic power test rig to diagnose real e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
7
0
1

Year Published

2009
2009
2021
2021

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(9 citation statements)
references
References 14 publications
0
7
0
1
Order By: Relevance
“…[16] It is clear from the mathematical models of the oil leakage and the valve spoolblockage faults, that the variables: x p , P 1 , and P 2 and their derivatives are sufficient to describe the two faults. Hence, only three sensors are sufficient to diagnose the considered faults.…”
Section: A Fds Of a Hydraulic Drivementioning
confidence: 99%
“…[16] It is clear from the mathematical models of the oil leakage and the valve spoolblockage faults, that the variables: x p , P 1 , and P 2 and their derivatives are sufficient to describe the two faults. Hence, only three sensors are sufficient to diagnose the considered faults.…”
Section: A Fds Of a Hydraulic Drivementioning
confidence: 99%
“…In another study, the actuator internal leakage and valve spool blockage are diagnosed by the NN without the presence of disturbances or sensor faults. Because the linearized model is used, it reduces the inherent nonlinearity of the system [42]. In [43], the position controller is tolerant with actuator internal leakage and robust with parametric uncertainties in the EHA in which the sensor fault is not considered.…”
Section: Introductionmentioning
confidence: 99%
“…Am Markt etablierte CM-Systeme beurteilen den Anlagenzustand meist in der Zeit-oder Frequenzdomäne anhand einer Schwellwertuntersuchung der einzelnen Sensordatenströme. Daneben finden sich in der Literatur verschiedene multivariate Ansätze zur Zustandsüberwachung von hydraulischen Anlagen, die auf künstlichen neuronalen Netzen [3], Entscheidungsbäumen [4] und semantisch-statistischer Analyse [5] basieren. In der vorliegenden Arbeit soll ein statistisches Verfahren gezeigt werden, das für eine automatisierte Auswertung geeignet und mit geringem Aufwand auf geänderte Rahmenbedingungen (Ausfall eines Sensors, Auftreten eines neuen Schadensfalls, Änderung der Anlagenkonfiguration) adaptierbar ist.…”
Section: Introductionunclassified