2021
DOI: 10.15625/0866-7136/15822
|View full text |Cite
|
Sign up to set email alerts
|

Fault diagnosis of rolling bearings using singular spectrum analysis and artificial neural networks

Abstract: Singular spectrum analysis (SSA) has been employed effectively for analyzing in the time-frequency domain of time series. It can collaborate with data-driven models (DDMs) such as Artificial Neural Networks (ANN) to set up a powerful tool for mechanical fault diagnosis (MFD). However, to take advantage of SSA more effectively for MFD, quantifying the optimal component threshold in SSA should be addressed. Also, to exploit the managed mechanical system adaptively, the variation tendency of its physical paramete… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 21 publications
0
0
0
Order By: Relevance