2023
DOI: 10.1049/gtd2.13090
|View full text |Cite
|
Sign up to set email alerts
|

Fault identification for power transformer based on dissolved gas in oil data using sparse convolutional neural networks

Zhijian Liu,
Wei He,
Hang Liu
et al.

Abstract: This paper addressed the challenges associated with the complexity, numerous parameters, computational resource demands, and slow processing speed of transformer fault identification models based on deep learning technologies. Sparse convolutional neural network (CNN) approach is proposed for identifying faults related to dissolved gases in oil. Leveraging an improved Gramian angular field, one‐dimensional fault samples are converted into two‐dimensional feature images and data augmentation is implemented to m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 22 publications
0
0
0
Order By: Relevance