Hydrothermal convection in porous geothermal reservoir systems can be seen as a double-edged sword. On the one hand, regions of upflow in convective systems can increase the geothermal energy potential of the reservoir; on the other hand, convection introduces uncertainty, because it can be difficult to locate these regions of upflow. Several predictive criteria, such as the Rayleigh number, exist to estimate whether convection might occur under certain conditions. As such, it is of interest which factors influence locations of upwelling regions and how these factors can be determined. We use the thermodynamic measure entropy production to describe the influence of spatially heterogeneous permeability on a hydrothermal convection pattern in a 2D model of a hot sedimentary aquifer system in the Perth Basin, Western Australia. To this end, we set up a Monte Carlo study with multiple ensembles. Each ensemble contains several hundred realizations of spatially heterogeneous permeability. The ensembles only differ in the horizontal spatial continuity (i.e., correlation length) of permeability. The entropy production of the simulated ensembles shows that the convection patterns in our models drastically change with the introduction and increase of a finite, lateral correlation length in permeability. An initial decrease of the average entropy production number with increasing lateral correlation length shows that fewer ensemble members show convection. When neglecting the purely conductive ensembles in our analysis, no significant change in the number of convection cells is seen for lateral correlation lengths larger than 2000 m. The result suggests that the strength of convective heat transfer is not sensitive to changes in lateral correlation length beyond a specific factor. It does, however, change strongly compared to simulations with a homogeneous permeability field. As such, while the uncertainty in spatial continuity of permeability may not strongly influence the convective heat transfer, our findings show that it is important to consider spatial heterogeneity and continuity of permeability when simulating convective heat transfer in an aquifer.