The humanized anti-HER2 monoclonal antibody (mAb) trastuzumab (Herceptin; Genentech) effectively inhibits human epidermal growth factor receptor 2 (HER2)-positive breast tumors. However, many patients responding to treatment often develop resistance. Cross-talk between type I insulin-like growth factor receptor (IGF-IR) and HER2 and elevated IGF-IR signaling have been implicated in tumor cell resistance to trastuzumab therapy. Previously, we reported that the anti-IGF-IR mAb m590 inhibits proliferation and migration of breast cancer MCF-7 cells in vitro. Here, we generated a "knobs-into-holes" bispecific antibody (Bi-Ab) against HER2 and IGF-IR by engineering trastuzumab and m590. We compared the effects of Bi-Ab treatment in vitro and in SKOV-3 HER2-and IGF-IR-overexpressing cancer xenograft mouse model with those of m590 and trastuzumab treatment alone or in combination. Bi-Ab effectively inhibited proliferation of HER2-and IGF-IR-overexpressing ovarian cancer SKOV-3 cells in vitro by ablating receptor phosphorylation and downstream PI3K/Akt and mitogen-activated protein kinase signaling. Bi-Ab more effectively inhibited cancer growth in SKOV-3 HER2-and IGF-IR-overexpressing cancer xenograft mouse model than m590 and trastuzumab alone or in combination. Mice bearing SKOV-3 HER2-and IGF-IR-overexpressing xenografts showed extensive and sustainable tumor regression when treated with Bi-Ab. Our results suggest that Bi-Ab has superior antitumor activity compared with monospecific antibodies, and cotargeting HER2 and IGF-IR may be clinically beneficial in minimizing the acquired resistance to trastuzumab therapy. Mol Cancer Ther; 13(1); 90-100. Ó2013 AACR.