Image processing is one example of digital media. It consists of a set of operations to handle an image. Image segmentation is among its main important operations. It involves dividing the image into several parts or regions to extract vital information or identify relevant objects. Many techniques of artificial intelligence, including bio-inspired algorithms, have been used in this regard. This article collected the state-of-the-art studies presenting image-segmentation techniques combined with four bio-inspired algorithms including particle swarm optimization (PSO), genetic algorithms (GA), ant colony optimization (ACO), and artificial bee colonies (ABC). This research work aimed at showing the importance of image segmentation and its combination with these algorithms. This article provides insights on how these algorithms are adapted to image-segmentation combinatorial problems, which assist researchers to start the first hands-on application. It also discusses their setting parameters and the highly used algorithms such as PSO, GA, ACO, and ABC. The article presents new research directions in image segmentation based on bio-inspired algorithms.