Enhancement of the low-affinity Fc epsilon receptor (CD23) expression by cytochalasin was analyzed on the human monocytelike cell line, U937. The CD23 expression on the U937 cells was enhanced at 24 hr after culture with cytochalasin B, D, or E, especially cytochalasin E having the most remarkable effect on it at the low concentration. This enhanced expression was found to be associated with a concomitant increase of a CD23 (about 45-kDa) protein on the U937 cells as assessed by Western blotting analysis. On the other hand, CD11a, CD18, CD31, CD49d, or CD54 was not markedly enhanced on the U937 cells by culture with cytochalasin E, although the mean fluorescence intensities (MFIs) of CD11a, CD18, and CD54 on U937 was partially up-regulated. Cell growth of U937 cultured with cytochalasin E was completely suppressed for 72 hr, but cell viability was sufficiently maintained (more than 95%). Soluble-formed CD23 (sCD23) also was released from the U937 cells at 24 to 72 hr after culture with cytochalasin E. In addition, the protein tyrosine kinase activity was detected in the U937 cells cultured with cytochalasin E for 24 hr using the enzyme immunoassay. Enhancement of the CD23 expression on the U937 cells at 24 to 72 hr cultured with cytochalasin E was sufficiently blocked by protein tyrosine kinase inhibitors herbimycin A and genistein, and a protein synthesis inhibitor, cychloheximide. On the other hand, protein kinase C inhibitors such as H-7 and H-8 had no effect on this CD23 expression. These results suggest that a mechanism underlying enhancement of the CD23 expression on the U937 cells cultured with cytochalasin E is mediated through tyrosine phosphorylation and protein synthesis.