This article presents a comprehensive parametric study with experimental characterization of an inductively coupled CPW-fed slot antenna on a GaAs substrate for MMIC applications. The length, width, and feed inset of the antenna are varied and their influences on the input impedance, bandwidth, and gain are investigated. The parametric study reveals that the slot length is the prime factor for determining the resonant frequency, while the width is used for fine-tuning of resonant frequency and gain-bandwidth product. For the fixed slot dimensions, the feed inset tremendously affects both resonant frequency and input match. The manufactured antenna resonates at 22.4 GHz with a 6.1% impedance bandwidth, 2% gain bandwidth, 2.5-dBi boresight gain, and 5-dB front-to-back (F/B) radiation level. The antenna exhibits bidirectional radiation patterns with almost omnidirectional patterns in the E-plane and a wide beamwidth of 84°3-dB beam width in the H-plane.