The current study investigates the impact of multiple slips on Jeffrey fluid model for unsteady magnetohydrodynamic viscoelastic buoyant nanofluid in the presence of Soret and radiation over a permeable stretching sheet. Appropriate transformations are utilized to obtain the relevant nonlinear differential system. The obtained differential system is tackled numerically with the finite element method. Effect of the controlling parameters on dimensionless quantities such as velocity, temperature, concentration, and nano-fluid volume fraction profile, as well as on dimensionless numbers such as local Nusselt, Sherwood, nano-particle Sherwood, and the local friction coefficient is analyzed. The effect of multiple slips is examined and found that the boundary layer flow increases in the presence of multiple slips. Numerically obtained solutions are contrasted with the published literature and found to be in nice agreement. The present study has many applications in coating and suspensions, cooling of metallic plate, paper production, heat exchangers technology, and materials processing exploiting.