In this paper, three new Cu(II) Schiff base complexes with three different anions (acetate, chloride, and nitrate) were successfully synthesized and characterized by elemental analysis, mass spectra, molar conductance, FT‐IR, NMR,UV–vis spectroscopy, magnetic moment, ESR, and thermal analysis. The catalytic performances of these complexes in decolorization of azo dye, Acid Red 37, were evaluated. Copper(II) complexes were found to be an efficient catalyst for decolorization of Acid Red 37 in the presence of hydrogen peroxide. The catalytic investigation revealed that the Cu(II) complex with acetate anion (complex 1) performed the highest catalytic activity. The kinetics of the decolorization of AR37 with this catalyst was studied, and the observed rate constant was determined. The effects of different reaction parameters such as catalyst dosage, solution pH, initial concentration of H2O2, dye solution, and reaction temperature on the reaction rate constant were studied. The best reacting conditions should be catalyst dosage = 0.004 g, initial pH 4.0, [H2O2]0 = 0.8 M, and [AR37]0 = 1.16 M at temperature 25°C. Under these conditions, about 99% of AR37 was decolorized within 60 min. The results indicated that the Cu(II) complex with the acetate anion is a promising catalyst for wastewater treatment.