Spectroscopic observations of EUV emission lines in the transition region (TR) and the corona provide unique information on physical conditions in the outer atmosphere of the Sun. The EUV Imaging Spectrometer (EIS) on board the Hinode satellite is capable of observing, for the first time in EUV, spectra and monochromatic images of plasmas in the solar TR and corona; these plasmas could possibly be in non-ionization-equilibrium conditions. EIS observes over two-wavelength bands of 170 -210 Å and 250 -290 Å, with typical time-resolutions of 1 -10 seconds. Iron line emissions emerging from these wavelengths reveal that dynamic plasma accelerations and heating take place in the solar atmosphere. On the other hand, the tracer-encapsulated-pellet (TESPEL) experiments provide spectral information of EUV emission lines from iron ions produced in the Large Helical Device (LHD). Relatively cool plasmas with electron temperatures similar to those of the solar corona can be generated by controlling the neutral beam injector (NBI) system. A time-dependent collisional radiative (CR) model for elemental iron is developed as a common tool to diagnose temperatures and densities of those plasmas in the Sun and in LHD; no systematic model yet exists for iron ions in the L-and M-shell ionization stages, which are very important for coronal plasma diagnostics. Adopting the best available theoretical calculations, as well as generating the experimental data, we improve the atomic parameters of highly charged iron ions, and these results are used to extract more accurate diagnostic information out of the EIS spectra.