Airborne wind energy (AWE) has received increasing attention during the last decade, with the goal of achieving electricity generation solutions that may be used as a complement or even an alternative to conventional wind turbines. Despite that several concepts have already been proposed and investigated by several companies and research institutions, no mature technology exists as yet. The mode of energy generation, the type of wing, the take-off and landing approaches, and the control mechanisms, to name a few, may vary among AWE crosswind systems. Given the diversity of possibilities, it is necessary to determine the most relevant factors that drive AWE exploration. This paper presents a review on the characteristics of currently existing AWE technological solutions, focusing on the hardware architecture of crosswind systems, with the purpose of providing the information required to identify and assess key factors to be considered in the choice of such systems. The identified factors are categorized into four distinct classes: technical design factors (aerodynamic performance, mass-to-area ratio, durability, survivability); operational factors (continuity of power production, controllability, take-off and landing feasibility); fabrication and logistical factors (manufacturability, logistics); and social acceptability factors (visual impact, noise impact, ecological impact, safety).