The application of optical coherence tomography (OCT) technique is not very common when measuring large dimensions is required. This type of measurements can be critical to achieve satisfactory results in the manufacturing process of precision parts. Components and structures ranging from submillimeter to several centimeters size can be found in many fields including automotive, aerospace, semiconductor, and data storage industries to name a few. In this chapter, an interferometric system based on the swept source optical coherence tomography (SS-OCT) technique, which has a wide measurement range and good axial resolution, is presented and its constituent parts are analyzed. The scheme includes a self-calibration stage based on fiber Bragg gratings (FBGs) that allows monitoring the spectral position of the light source in each scan, having the advantage of being a passive system that requires no additional electronic devices. Several applications of the system are described, including measurement of distances up to 17 cm, characterization of multilayer transparent and semitransparent structures, simultaneous determination of thickness of the wall, internal and external diameter of glass ampoules or similar containers, thickness measurements in opaque samples or where the refractive index is unknown, etc.